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Received 20 November 1985 

Abstract. An Ising chain with Hamiltonian H = - J  Z,,, &,,S,S,/II - j / ( ’+ ‘ ) ’2  is considered 
where the E,, are independent random variables. According to Kotliar er a1 this model has 
a phase transition with non-mean-field exponents when f < U < 1 and mean-field exponents 
beyond the upper critical value of U=$. By means of an E expansion about the lower 
critical value of U = 1, the model is shown to be replica symmetric as E + O  and it is 
speculated that this result holds for $ < U  < 1. 

The rationale for the study of one-dimensional spin models with long-range interactions 
is that they may serve as instructive analogies for higher-dimensional models with 
short-range interactions. To this end Kotliar et a1 (1983, to be referred to hereafter 
as KAS) introduced a model one-dimensional spin-glass Hamiltonian 

H { S J  = - JljSiSj (1) 
(ij) 

where the Ising spins Si take the values k l ,  the sum is over all pairs (ij) and i and j 
denote integer positions on a one-dimensional lattice. The interaction 

where the are independent random variables with a Gaussian distribution of zero 
mean and unit variance. This model is clearly highly artificial and no physical system 
comes close to being well described by it. Nevertheless, there are useful similarities 
between this model’s properties as a function of the range parameter U and the 
behaviour of short-range models as a function of their dimensionality d. For example 
KAS demonstrate that for -1 S U < f  the one-dimensional model has mean-field 
behaviour and exponents. Indeed, provided J is rescaled to ensure the existence of 
the thermodynamic limit, the model reduces for U = -1 to the much studied Sherring- 
ton-Kirkpatrick (SKI model (Shemngton and Kirkpatrick 1975). For short-range spin 
glasses, mean-field exponents are expected for all dimensions from infinity down to 
six. Between six and the lower critical dimension (whose precise value is not known 
but probably lies between two and three dimensions (see Bray and Moore (1984, 1985) 
for recent speculations)) non-mean-field exponents are obtained and this is parallelled 
by non-mean-field exponents in the long-range model for f < U < 1. For U > 1 the model 
becomes effectively short-ranged and does not exhibit a transition at finite temperatures. 

The nature of the low temperature phase in spin glasses has only been determined 
for the SK model. The phase is characterised by many pure states (Parisi 1983) whose 
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free energies are close to the one of lowest free energy and the space of pure states 
displays an ‘ultrametric’ topology (MCzard et a1 1984a, b). Certain quantities such as 
the susceptibility are not self-averaging in the thermodynamic limit (Young et al 1984). 
Strong correlations exist between the magnetisations m:( =(SI) in state S) of different 
pure states. These can be described by the Parisi overlap functions (Parisi 1983, MCzard 
et a1 1984a, b), the simplest of which is 

P,(q)  = c P,Ps,G(q - q s , , ) .  (3) 
S,S’ 

P, is the Boltzmann weight of the pure state S and qss. is the overlap (1/N) X i  mfm;’. 
The configuration averaged P,( q )  = P (  q )  is non-trivial as replica symmetry breaking 
occurs in the SK limit. 

The natural assumption to make about the ordered phase outside the SK model 
(which corresponds to the limit of infinite dimensionality) is that it is similar to that 
of the SK model in having many pure states. However, we have argued elsewhere 
(Moore and Bray 1985) that for d < 6  there is only a single pure state (or rather two 
pure states, counting the time-reversed state). This implies a trivial P ( q ) :  

p ( q )  = 3 [s (q  - q E A )  + s ( q  + q E A ) I  

where q E A  is the Edwards-Anderson order parameter (Edwards and Anderson 1975). 
In the language of replicas the low temperature phase is replica symmetric. We 
hypothesised that replica symmetry pertains for d < 6, but that for d > 6 many pure 
states and replica symmetry breaking should exist. In the mean-field limit there is a 
line in the field-temperature diagram-the so-called Almeida-Thouless (AT) line (de 
Almeida and Thouless 1978)-which separates the high temperature paramagnetic 
phase from a phase characterised by many pure states. We argued that as for d < 6 
the ordered phase is replica symmetric, there should be no AT line for d <6. 

All the arguments which we advanced for these assertions should apply with equal 
force to the long-range one-dimensional model when f < a < 1, i.e. in the region of 
non-mean-field exponents. On the basis of these arguments we expect a trivial replica 
symmetric P (  q )  for all values of a between the upper critical value o f f  and the lower 
critical value of unity. The chief result of this letter is that P (  q )  is indeed trivial near 
the lower critical value of a ,  but first I shall indicate how just one of our arguments 
(Moore and Bray 1985) for a trivial P ( q )  extends to the long-range model. Bray and 
Roberts (1980) performed an E expansion for the exponents across the presumed AT 

line in (6 - E )  dimensions, but were unable to find a stable accessible fixed point. One 
possible explanation of this could be that there is simply no  line in (6 - E )  dimensions. 
A similar expansion about the upper critical value of a(=+) can be done for the 
one-dimensional long-range spin glass. One has simply to set in the Bray-Roberts 
calculation the exponent 7 equal to (2 - a)-the value appropriate to this long-range 
interaction (Sak 1973)-and E = 5 .  The effective expansion parameter is (3a  - 1)/2. 
Once more no stable accessible perturbative fixed point can be located, suggesting that 
for the long-range model there is no AT line when f < a < 1. 

To investigate the system near the lower critical value of a, i.e. around a = 1, we 
follow the procedure of KAS. They first used the replica method to write the average 
of the nth power of the partition function 2 as 
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Carrying out the integrals gives 

The free energy 
- 

F= -(pn)-' In 2" as n+0.  

At each site i there are replicated spin variables Sp = *l ,  a = 1,  2, . . . , n. The possible 
values of Sp can be regarded as lying at the vertices of an n-dimensional hypercube. 
u s  found it convenient to introduce variables uab a = 1 , .  . . , 2"  to describe the 2" 
different values of {Sq}. The U, are n-component vectors, e.g. 

U1 = ( 1 , 1 , .  . . , 1) etc. (7) 

The next step is to write the Hamiltonian H,, of equation ( 5 )  in terms of defect or 
'kink' variables and determine the renormalisation group (RG) equations for the defect 
fugacities and coupling constants (Cardy 1981). 

The interaction energy between a spin in state a at site i and a spin in state P at si tej  is 

u 2 = ( - 1 , 1 , .  . . , 1 )  U3 = (1, - 1 , .  * . , 1 )  

where a constant has been subtracted from H,, in ordKthat K ( a ,  a) = 0. Let Yup be 
the fugacity of an aP defect. The partition function 2" is given in kink variables by 

X [ K  ( a p + i r  aq) + K (ap a q + i )  - K (ap aq) - K (  a p + i ,  a q + i  (9) 

(Cardy 1981, Kosterlitz 1976, u s ) .  Note that Y,, = 0 and that periodic boundary 
conditions have been assumed; a is the lattice spacing. A change in the lattice spacing 
a + a exp 1 can be compensated by a change in the kink fugacities and coupling 
constants provided the partition function remains invariant. This leads to the RG 
equations ( u s )  

Equations (10) and ( 1  1) should be valid to first order in E and small fugacities where 
E = 1 -U. u s  claim that the pertinent fixed point of equations (10) and ( 1 1 )  is the 
symmetric fixed point 

asn+O (12) yap = y* = (&/2"+1)1/2= (&/2)1/2 
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K ( a ,  p )  = K *  = [ - 1 +  (2  - 2 " ) ( ~ / 2 " " ) " ~ ] / 2 + 0 ( ~ )  

= - $ + ( & / 2 ) " 2 / 2  as n-, 0. (13) 

By linearising around this fixed point, KAS showed that the correlation length exponent 
v is given by l / v =  1.1J~. 

We next proceed to calculate the magnetic exponent Y h  which describes the depen- 
dence of the field conjugate to the spin-glass order parameter (see beloy). By scaling, 

Y h  = ( d  + 2 -  7 ) /2 .  (14) 

Now for systems with long-range interactions 7 = 2 - a  (Sak 1973) so 

Yh = ( 1  + a)/2= 1 - & / 2 .  (15) 

It is instructive to see how this result emerges from RG recursion relations. A conjugate 
field for spin glasses derives from a Gaussian random field hi of zero mean and variance 
h. We generalise the Hamiltonian of equation ( 1 )  to 

After replicating and averaging over {Ji}, and {h,} ,  the p H n  term of (5) has to be 
supplemented by the expression 

The form of (16) suggests that p 2 h 2  is the conjugate field for the quantity 

which is related to the 'statistical mechanics' spin-glass order parameter (de Dominicis 
and Young 1983). Let t denote the n-component vector ( 1 , 1 , 1 , .  . . , 1 ) .  Then (16) can 
be rewritten in terms of t and the wai variables as 

where H, = i p 2 h 2 ( t -  U,)'. RG equations for the H, will now be derived, assuming 
that h is infinitesimally small. Due to the new field terms, equation (9) will now contain 
an additional factor in the integrand of 

(18) e x p [ H , , ( r 2 - r l ) / a + H , , ( r ~ - r 2 ) / a +  . . . +Hu, (L- [rp-r l l ) /a l  

where Lis the length of thechain. If we replace a by a e', each H, in (18) must be changed 
to H, e' in order to leave Z" unmodified. The effect of changing a in the cut-off is most 
easily obtained by writing 

e(rj+l - rj - a e') = 6(r j+ l  - rj - a )  - a h (  rj+l - 5 - a )  +O( Z2) (19) 

and neglecting the terms of 0(l2) (Cardy 1981). The delta function means that the 
additional terms from changing the cut-off can be derived by juxtaposing each neigh- 
bouring kink pair in turn. The factors involving two such kinks i, i +  1 and a third 
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kink at j of the type (a, p )  are 
1y y [ ( r j  - r i ) / a ] ( K ( a , , ~ ) + K ( ~ 2 , 8 ) - K ( a l , B ) - K ( ~ 2 , ~ ) )  

PIu, ala3 

[ ( r j  - ri - a ) / a ] ( K ( a 2 , n ) + K ( a 3 . p ) - K ( a 2 , 8 ) - K o f  

x exp[H,,( ri - r i - l ) / a  + Hu2+ Hu3( ri+* - ri - a)/a]. (20) 

If a1 = aj the kink pair at i and. i +  1 is referred to as neutral. For ( 5  - r i )  >.> a, 
( rj - ri - a ) /  a can be approximated by ( rj - r i ) /  a to leading order, when for a neutral 
pair, equation (20) becomes independent of ri. Terms beyond the leading order 
depending on the fields H, lead to modifications of O(H,) in the recursion relations 
(10) and (11) for Yup and K ( a ,  p )  and can therefore be dropped for small H,, as can 
the field contributions from non-neutral pairs, i.e. those where a1 # a3. Integrating ri 
from ri - l  to rii2 reduces (20) to 

lY2,,u,E(ri+*-ri-l)/aI exp[HuI(ri+2- r i - l ) /aI [1  + ( H u , - H u , ) + 0 ( ~ 2 , ) 1 .  (21) 
The term of O(1) in (21) contributes only a constant to the free energy (Cardy 1981) 
but the term of O( H,, - H,,)  has to be compensated by a change in H,, to ( H,, +AH,,), 
namely 

e x ~ [ ( H u , + A H , , ) ( r i + ~ - r i - l ) / a I  =ex~[Hu,(ri+2-ri-l) lal  
~ [ l + A H , ~ ( r ~ + ~ - r ~ - ~ ) / a +  . . .]. 

Summing over all possible neutral pairs, the final RG equation for H, is 

(23) -- dHm - H, + c Y2,,( H ,  - H,) .  
dl  ,#a 

Put H, = HC, where initially C, = ( 1 .  a,)' and H =$'h'. At the symmetric fixed 
point Y,, = Y* so (23) reduces there to 

d H  
dl  a sn+O _- - H [  1 - 2"( Y*)*] = H (  1 - E/2) 

where we have used the result that X u  C, = 0 as n + 0. Hence the magnetic exponent 
Y h  calculated from (24) coincides with the scaling prediction of equation (15).  

The calculation of P( q )  follows along similar lines. Parisi (1983) has shown that 
a definition of P, (q )  equivalent to that of equation ( 3 )  is 

provided the thermal average is now over the doubly replicated Hamiltonian H{ 7;) + 
H { S i } .  It is useful to introduce 

for then 

In order to calculate the bond average of F , ( y ) ( = F ( y ) )  we again introduce replicated 
variables at each site, SS, TP, a = 1 , .  . . , n. Now equation (26) means when explicitly 
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written out 

After bond averaging the calculation of F ( y )  proceeds as previously. The kink or 
defect variable U,, is now a vector of length 2n, the first n components contain the S 
variables, the second n components the T variables. Q runs from 1-22". Because at 
the end of the calculation n must be set to zero, the analogues of equations (10) and 
(11) in the new variables K ( a ,  p )  and Y,,, Q = 1-22" yield the same fixed points and 
exponents. The term in y produces a field term (cf equation (18)) 

exp[Ha,(r2- r , ) / a + H , , ( r 3 -  r * ) / a +  * * + ~ a , ( ~ - l r p  - r,l)/al 
where now Ha, = ( y / N ) S L i T i j ;  St, and TL, are the first and ( n +  1)th components of 
uai. Notice that because of the factor 1/ N, H,, is very small and so the derivation of 
the analogue of equation (23), namely 

a = 1 ,  ..., 22" (30) -- dHa-H,+ C YZ,,(H,-H,) 
dl  v # a  

is well founded. Putting H, = HC, where now initially C, = St  TL and H = y /  N, one 
observes that ZC, = 0. Assuming that Yay = Y(I), at least in the vicinity of the 
symmetric fixed point, equation (30) reduces to 

d H / d l =  H[1 -22"Y2(1)]. (31) 

d H / d l =  H( 1 - & / 2 )  (32) 

At the fixed point itself, where Y* = ( ~ / 2 ~ " + ~ ) " ~ ,  equation (31) becomes 

and hence the magnetic exponent yh obtained this way is identical to that previously 
obtained by calculating the response to a random field. 

As n+0,  we can set 22" in equation (31) to unity, and solve for H ( l ) ,  with 
H(O) = Y /  N ;  

H ( I )  = ( y / N )  exp I -  Y2(l') dl' . ( I,' ) (33) 

At the value of Z = I* where e'* = N, there are effectively just two spins S and T left 
in the system coupled by H(l*)-the rest have been integrated out. 

Define 

qEA = exp( -loi* Y2( 1 ' )  dZ') as I* + CO. 

Then (cf equation (28)) 

(34) 

F ( y ) = T r  exp ( H ( I * ) T S )  T r ( l ) T r ( l )  = ( e Y q ~ ~ + e - Y q ~ ~ ) / 2  
T, S ( T  S 
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so from equation (27) 

p ( q )  = [ S ( q - ( I E A ) + S ( q + q E A ) 1 / 2 .  (35) 
Equation (35) shows that at least to first order in E, P ( q )  is trivial and that the spin 
glass is apparently replica symmetric, i.e. it consists of basically a single pure state. It 
is difficult to see how higher-order terms in the E expansion could ever modify this 
result. We suspect, therefore that for f < (T < 1 replica symmetry is obtained. For v < $ 
no RG treatment is possible; one proceeds via a loop expansion about the mean-field 
theory. When this is a valid procedure we expect replica symmetry breaking to occur. 
Bhatt and Young (1985) have performed Monte Carlo simulations for the one- 
dimensional long-range model, but to date they have not calculated P ( q )  outside the 
mean-field limit. A Monte Carlo simulation of P( q )  would be a highly desirable check 
on these calculations. 

I am indebted to Dr Alan Bray for innumerable useful discussions. 
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